Skip Navigation

Steven Finkbeiner, MD, PhD

flower close-up

Steven Finkbeiner, MD, PhD

Gladstone Institutes, University of California, San Francisco

Human neuromuscular models of ALS

Two recently discovered genes that have been associated with both familial and sporadic forms of ALS encode the related proteins TDP43 and FUS. Our goal is to determine how TDP43 and FUS cause neuron death in ALS. Based on work in our lab and by other groups, we predict that mutant forms of TDP43 and FUS interfere with a cell’s ability to perform a quality control function called “nonsense mediated decay” which prevents the production of abnormal proteins in the cell. We have built a unique robotic microscopy time-lapse imaging system that allows us to test whether boosting the levels of an enzyme called UPF1 that performs this quality control can help neurons survive even in the presence of mutant or high levels of TDP43 and FUS. If so, we may be able to design drugs that increase or mimic UPF1 and prevent neurodegeneration.

Note: Funding for this project is made possible by the William H. Adams Foundation.

 

return to project list

Steven Finkbeiner

Our Experts

Gladstone Institutes, UCSF
Two recently discovered genes that have been associated with both familial and sporadic forms of ALS encode the related proteins TDP43 and FUS cause neuron death in ALS.
Meet Our Experts